Enraf–Nonius CAD-4	$R_{\rm int} = 0.0106$
diffractometer	$\theta_{\rm max} = 25.0^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 16$
Absorption correction: none	$k = 0 \rightarrow 9$
2823 measured reflections	$l = -17 \rightarrow 16$
2698 independent reflections	2 standard reflections
1821 reflections with	frequency: 60 min
$I > 2\sigma(I)$	intensity decay: 0.9

Refinement

Refinement on F^2	
R(F) = 0.046	
$wR(F^2) = 0.111$	
S = 1.065	
2698 reflections	
191 parameters	
H-atom coordinates fixed,	
one common U	

ntensity decay: 0.9% $w = 1/[\sigma^2(F_o^2) + (0.0500P)^2]$ + 0.9295P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = -0.001$ $\Delta \rho_{\rm max} = 0.197 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.194 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

= 0.0106

Table 1. Selected geometric parameters (Å, °)

	-	-	
01—C2	1.349 (3)	O4—C4	1.457 (3)
O1—C8a	1.469 (3)	C2—C2a	1.516 (4)
O2—C2	1.197 (3)	C3—C4	1.469 (3)
O3-C10	1.208 (3)	C5—C8c	1.329 (3)
O4—C3	1.446 (3)		
C2O1C8a	109.7 (2)	O4—C4—C5	117.0(2)
C3O4C4	60.81 (15)	C3-C4-C5	118.2 (2)
O4-C3C4	59.93 (15)	O4-C4-C10	114.1 (2)
O4—C3—C9	115.5 (2)	C3-C4-C10	120.7 (2)
C4C9	123.5 (2)	C5C4C10	115.4 (2)
O4—C3—C2a	112.5 (2)	C5-C8c-C6	121.7 (2)
C4-C3-C2a	114.4 (2)	C5C8cC8b	119.0 (2)
C9-C3-C2a	117.2 (2)	C6—C8c—C8b	119.2 (2)
O4—C4—C3	59.26(15)		

The H atoms were found from difference Fourier maps and included as fixed contributors. Only an overall isotropic displacement parameter was refined and converged to U =0.075(2) Å².

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1994).

This work received partial support from FAPESP (Proc. 94/1213-5 and 94/2061-4), CNPg, CAPES and FINEP.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1275). Services for accessing these data are described at the back of the journal.

References

- Abboud, K. A., Malvestiti, I., Boldea, L., Walker, M. A. & Battiste, M. A. (1995). Acta Cryst. C51, 995-997.
- Bhat, S. V., Bajwa, B. S., Dornauer, H. & de Souza, N. J. (1977). Tetrahedron Lett. 19, 1669-1672.

Bhat, S. V., Dohadwalla, A. N., Bajwa, B. S., Dadkar, N. K., Dornauer, H. & de Souza, N. J. (1983). J. Med. Chem. 26, 486-492.

© 1997 International Union of Crystallography Printed in Great Britain - all rights reserved

- Corey, E. J., Jardine, P. S. & Rohloff, J. C. (1988). J. Am. Chem. Soc. 110, 3672-3673.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358. Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.

Hashimoto, S., Sakata, S., Sonegawa, M. & Ikegami, S. (1988). J. Am. Chem. Soc. 110, 3670-3672.

- Malvestiti, I. (1994). PhD thesis, Departamento de Química, Universidade Federal de São Carlos, Brazil.
- March, J. (1992). Advanced Organic Chemistry: Reaction and Mechanism and Structure, 4th ed., pp. 826-827. London: John Wiley.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Ziegler, F. E., Jaynes, B. H. & Saidane, M. T. (1987). J. Am. Chem. Soc. 109, 8115-8116.
- Zsolnai, L. (1994). ZORTEP. Interactive Graphics Program. University of Heidelberg, Germany.

Acta Cryst. (1997). C53, 971-973

N-(2-Pyridinium)urea Perchlorate[†]

VELICHKA VELIKOVA, OLYANA ANGELOVA, ROSICA PETROVA AND KRASIMIR KOSSEV

Bulgarian Academy of Sciences, Central Laboratory of Mineralogy and Crystallography, Rakovski Str. 92, 1000 Sofia, Bulgaria. E-mail: jmacicek@bgcict.acad.bg

(Received 2 December 1996; accepted 21 February 1997)

Abstract

The N-(2-pyridinium) urea cation of the title compound. $C_6H_8N_3O^+$. ClO_4^- , is planar within 0.022 (2) Å and adopts an s-cis-s-cis conformation with respect to the imino C-N bonds. The structure consists of centrosymmetric dimers of cations ordered in layers parallel to the (103) plane, and hydrogen-bonded anions.

Comment

This article is part of a project investigating adducts of urea derivatives and inorganic salts unsymmetrically substituted by π -conjugated substituents as potential non-linear materials. The adduct of N-(2-pyridyl)urea (2pU) with HReO₄ was found to crystallize in the centrosymmetric space group $P\bar{1}$ (Velikova, Petrova & Angelova, 1997) and contain cationic hydrogen-bonded dimers. Here we changed the counter ion to a tetrahedral but smaller ClO_4^- anion in order to investigate its effect on the cationic geometry and arrangement.

[†] Alternative name: 2-ureidopyridinium perchlorate.

$$\underbrace{\stackrel{O}{\longleftarrow}_{NH-C-NH_2}}_{(1)} Clo_4^-$$

Bond lengths and angles in N-(2-pyridinium)urea perchlorate (1) are similar to those found for 2pU (Velikova, Angelova & Kossev, 1997) and derivatives (Magueres, Ouahab, Hocquet & Fournier, 1994; Velikova, Petrova & Angelova, 1997). The intramolecular hydrogen bond between the protonated *endo* N atom and the carbonyl O atom is crucial for the planarity and conformation of the molecule. The cation is planar with the largest deviation of 0.022 (2) Å at both the N1 and C5 atoms. The overall conformation of the molecule can be described as *s*-*cis*-*s*-*cis* with respect to the imino C1—N2—C2 bonds. The same conformation is realised in the structure of *N*-(2-pyridinium)urea perrhenate (Velikova, Petrova & Angelova, 1997).

Fig. 1. The ions with the atom-numbering scheme; 50% probability displacement ellipsoids.

The ions are organized in layers parallel to $(\bar{1}03)$ by an extensive hydrogen-bonding network (Table 2). The cations are dimerized through centrosymmetric eightmembered hydrogen-bonded rings similar to those found in the structures of 2pU and 2pUH⁺.ReO₄⁻. In addition, the *cisoid* imino HN2 and amino HN32 atoms take part in another type of eight-membered hydrogen-bonded ring to O12 and O14 atoms (Fig. 2). An analogous interionic interaction has been found in the structure of guanidinium perchlorate (Pajak, Grottel & Koziol,

1982). In the structure of $2pUH^+$.ReO₄⁻ the same H atoms are bonded to one acceptor only, thus forming a six-membered ring. The layers are held together by weak van der Waals forces only.

Fig. 2. Projection of the structure down the a axis.

Experimental

The compound was obtained by mixing equimolar amounts of N-(2-pyridinyl)urea and perchloric acid (70%) in water and recrystallized from ethanol.

Crystal data

C₆H₈N₃O⁺.ClO₄⁻ Mo $K\alpha$ radiation $M_r = 237.60$ $\lambda = 0.71073 \text{ Å}$ Cell parameters from 22 Monoclinic reflections $P2_1/n$ $\theta = 19.93 - 21.08^{\circ}$ a = 5.946(2) Å $\mu = 0.42 \text{ mm}^{-1}$ b = 16.441 (4) ÅT = 292 Kc = 9.582(2) Å Prismatic $\beta = 100.14 (2)^{\circ}$ 0.40 \times 0.39 \times 0.26 mm V = 922.1 (8) Å³ Colourless Z = 4 $D_x = 1.712 \text{ Mg m}^{-3}$ D_m not measured Data collection Enraf-Nonius CAD-4 $R_{\rm int} = 0.025$ $\theta_{\rm max} = 28.0^{\circ}$ diffractometer

 $\omega/2\theta$ scans Absorption correction: none 4848 measured reflections 2025 independent reflections 1392 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.225 \ {\rm e} \ {\rm \AA}^{-3}$
R(F) = 0.036	$\Delta \rho_{\rm min} = -0.248 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.074$	Extinction correction:
S = 1.042	SHELXL93 (Sheldrick,
2026 reflections	1993)
161 parameters	Extinction coefficient:
H-atom positional parame-	0.017 (2)
ters refined	Scattering factors from
$w = 1/[\sigma^2(F_o^2) + (0.0353P)^2]$	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)
$(\Delta/\sigma)_{\rm max} = 0.001$	

 $h = 0 \rightarrow 7$

 $k = -21 \rightarrow 21$

 $l = -12 \rightarrow 12$

3 standard reflections

frequency: 120 min

intensity decay: 1.4%

Table 1. Selected geometric parameters (Å, °)

	•	•	
CI011	1.417 (2)	C2—N1	1.339 (2)
Cl-013	1.425 (2)	C2N2	1.366 (3)
Cl-014	1.425 (2)	C2C3	1.397 (3)
Cl-012	1.432 (2)	C3C4	1.363 (3)
01C1	1.228 (2)	C4—C5	1.387 (3)
C1—N3	1.326 (3)	C5—C6	1.359 (3)
C1—N2	1.386 (2)	C6—N1	1.351 (3)
011—C1—O13	109.43 (11)	01-C1-N2	120.7 (2)
011—C1—O14	110.22 (12)	N3-C1-N2	115.3 (2)
013-Cl-O14	109.76 (13)	N1-C2-N2	120.2 (2)
011—CI—O12	109.63 (11)	N2—C2—C3	121.4 (2)
O13-C1-O12	109.51 (11)	C4—C3—C2	119.1 (2)
O14ClO12	108.28 (11)	C2N1C6	122.9 (2)
O1-C1-N3	124.0 (2)	C2-N2-C1	125.9 (2)

Table 2. Hydrogen-bond parameters (Å, °)

$D - H \cdot \cdot \cdot A$	<i>D</i> H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$	A···H···A
N1—HN1···O1	0.85 (2)	1.92 (2)	2.606 (2)	137 (2)	
$N1 - HN1 \cdot \cdot \cdot O13^{i}$	0.87 (3)	2.47 (2)	3.105 (3)	132 (2)	90 (1)
N2—HN2···O14	0.79 (2)	2.17 (2)	2.950 (2)	170 (2)	
N3—HN31···O1 ⁱⁱ	0.83 (2)	2.15 (3)	2.950 (3)	164 (2)	
N3—HN32···O12	0.81 (2)	2.21 (3)	3.002 (3)	168 (3)	
~ .					

Symmetry codes: (i) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{3}{2} - z$; (ii) -x, -y, 1 - z.

All H atoms have been localized from difference Fourier maps and refined with fixed isotropic thermal displacement parameters.

Data collection: CAD-4 Manual (Enraf-Nonius, 1988). Data reduction: SDP/PDP (Enraf-Nonius, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: KAPPA (Macíček, 1992).

This work has been supported by the Bulgarian National Science Foundation, Project ch-588.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1081). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1985). Structure Determination Package. SDP/PDP User's Guide. Version 3.0. Enraf-Nonius, Delft, The Netherlands.

- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Macíček, J. (1992). Unpublished work.
- Magueres, P. L., Ouahab, L., Hocquet, A. & Fournier, J. (1994). Acta Cryst. C50, 1507-1511.
- Pajak, Z., Grottel, M. & Koziol, A. E. (1982). J. Chem. Soc. Faraday Trans. 2, 78, 1529-1538.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. University of Göttingen, Germany.

- Velikova, V., Angelova, O. & Kossev, K. (1997). Acta Cryst. C53. In the press.
- Velikova, V., Petrova, R. & Angelova, O. (1997). Acta Cryst. C53. In the press.

Acta Cryst. (1997). C53, 973-979

Isomerism/Tautomerism in Hydrazones Derived from Thiophenaldehydes and 2-Hydrazinoquinoline

JOEL T. MAGUE,^a SUE VANG,^b DOUGLAS G. BERGE^b AND WILLIAM F. WACHOLTZ^b

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ^bDepartment of Chemistry, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA. E-mail: joelt@mailhost.tcs.tulane.edu

(Received 6 November 1996; accepted 24 January 1997)

Abstract

The structures of 2-thiophenecarbaldehyde 2-quinolylhydrazone, C₁₄H₁₁N₃S, (1), 2-acetylthiophene 2quinolylhydrazone, $C_{15}H_{13}N_3S$, (2), 2(1*H*)-quinolone 5-bromo-2-thienylmethylidenehydrazone, $C_{14}H_{10}BrN_3S$, (3), and 5-chloro-2-thiophenecarbaldehyde 2-quinolylhydrazone, $C_{14}H_{10}ClN_3S$, (4), show that (1), (2) and (4) exist as the anti-E isomer, while (3) is the tautomer of the syn-Z isomer, being protonated on the quinoline nitrogen rather than on the exocyclic nitrogen. The photochemical isomerization/tautomerization of (3) to the *anti-E* isomer is discussed.

Comment

Hydrazones have been widely studied as chelating ligands for the spectrophotometric and fluorimetric determination of trace metal ions (Geldard & Lyons, 1964; Katyal & Dutt, 1975; Singh, Jain & Singh, 1972; Galiano-Roth & Collum, 1988; Desgupta, Zhang, Schulze & Marx, 1994). Less studied are those de-